
Lighthouse Tracking for 3D Diode Constellation

Theo Diamandis
Stanford University
Stanford, CA, USA

tdiamand@stanford.edu

Georgia Murray
Stanford University
Stanford, CA, USA

gmurray@stanford.edu

Abstract

We extended the Homography and Levenberg Marquardt
positional tracking techniques to be compatible with 3D
photodiode constellations. We then constructed a 3D
constellation using two VRduinos, positioned to maximize
range of motion within lighthouse line of sight. We were
thus able to increase the tracking systems range of rotation
from 105◦ to 195◦.

1. Introduction and Motivation
The VRduino in conjunction with HTC Vive Lighthouse

tracking systems offers a straightforward implementation of
VR positional tracking for amateurs and hobbyists. How-
ever, in its current iteration, the range of motion allowable
by this tracking system is highly limited as the entire photo-
diode plane must remain in line of sight of the lighthouses
in order for tracking to occur. In particular, this restricts the
user’s ability to look around a given scene, as head rotation
is likely to cause occlusion of at least one of the photodi-
odes, thus disrupting the connection and terminating track-
ing.

In this work, we describe a positional tracking imple-
mentation using two VRduinos in order to extend the viable
range of the tracking system. Additionally, we demonstrate
additional robustness through the inclusion of multiple pho-
todiode arrays arranged in a 3D constellation.

2. Related Work
Current industry approaches to the positional tracking

problem span a space of solutions, from HoloLens [1] to
Tengo [2]. However for hobbyists and amateur consumers,
these solutions are generally out of scope.

The HTC Vive, released last year, pioneered the light-
house positional tracking system for the consumer market.
It’s performance, both quantitative and qualitative, were
characterized by [3], whose results we used to benchmark
our own system.

In developing our Homography and Levenberg-
Marquardt computations or a 3D photodiode constellation,
we used the 2D computations of Professor Gordon Wet-
zstein as a guide[4] [5]. We also explored a variety of
textbooks and journal articles on camera calibration and
positional tracking, but were unable to find any that actually
implemented the computations for a 3D constellation.

3. Methods
Our implementation of extended positional tracking con-

sisted of three major components:

1. Design and testing of optimal physical arrangement.

2. Streaming and synchronization of data from indepen-
dent VRdiuno boards.

3. Positional computation and mapping.

3.1. Physical System

3.1.1 Initial Design:

Before designing our physical system, we characterized the
range of rotation of a single VRduino board while using the
lighthouse positional tracking system. Z-axis rotation did
not occlude any photodiodes and X-axis rotation seemed
sufficient to look up or down; however, limited Y-axis ro-
tation significantly hampered the user’s interaction with the
virtual environment. To maintain reliable performance, we
found that Y-axis rotation was constrained to approximately
[−60o, 45o]1, providing only 30% of a full 360o rotation.
The off-center Teensy placement results in a difference of
negative and positive rotational ranges. The Teensy sits
closer to the rear two photodiodes on positive rotations, so
they are more quickly occluded. Based on this test, we de-
cided to position both VRduinos ±45o off of the Z-axis.
This provides a 15o overlap in the range of each VRduino,
leaving room for hand off when rotating and providing more
photodiodes for computation when facing directly towards

1The right handed OpenGL coordinate system is used

Figure 1. Location of each of the photodiodes in the xz plane.

the lighthouse.
The jig to hold these two VRduinos was modeled in Au-

todesk Fusion 360 (chosen due to a free educational license
and a cloud-based environment allowing for easy collabo-
ration and cross-platform compatibility) to ensure precise
placement of each VRduino board. A 5mm by 5mm rect-
angular prism separates the two boards. Figure 1 illustrates
the placement of each of the photodiodes in the xz plane.
Y-axis coordinates of ±25mm were used.

Figure 2. Half of the 3d jig (rendering)

3.1.2 Build Process and Design Iterations

An Ultimaker 2 printed all iterations of the jig, which each
cost less than $1.75. While we initially considered laser
cutting and assembling a multi-piece jig, we chose a 3D

Figure 3. The full 3d jig (rendering)

printed part due to assembly concerns and time constraints.
Still, we iterated our 3D jig several times to address toler-
ance and accuracy concerns.

The initial print was made with tolerances corresponding
to the specified resolution of the printer. It consisted of two
clips on the bottom and one on each side. Unfortunately,
the clips on the side where the boards meet had to be re-
moved. Structure wobble during printing due to the small
support (5x5mm) produced large inaccuracies. One small
tab was left at the bottom of each side to hold the back side
of the VRduino. We added more support on the back clips
to avoid wobble during printing. Additionally, we increased
tolerances to 0.20mm on each side of the board’s width and
0.25mm on each side of the board’s length, giving us 2.0mm

between clips and a 90.50mm space to hold the length of the
board. These tolerances created a good fit. After the next
print, we determined that the boards still wiggled too much
on top. We printed a small cap with two clips in an attempt
to solve this; however, the problem persisted. Eventually,
we created the symmetric structure used for the final demo.

The final printed jig consisted of identical top and bot-
tom pieces (Figure 2) with crossbeams. We fabricated both
pieces simultaneously, requiring a six hour print. These
two pieces were assembled together (Figure 3) and rubber
bands running between the two sets of crossbeams ensured
the VRduinos had a snug fit into the structure and remained
immobile, depicted in Figure 5. No vertical tolerance was
used to ensure the rubber bands applied constant pressure to
the VRduinos, holding them in place. Additionally, the rub-
ber band solution made for easy assembly and disassembly.
Figure 4 shows the final 3D jig with the VRduinos. This
final configuration assured the photodiode locations would
be exact and immobile.

Figure 4. The final 3d printed jig with VRduinos attached

Figure 5. Rubber bands hold the top and bottom pieces of the jig
together

3.2. Streaming and Synchronization

We considered several options to accumulate photo-
diode data from all eight photodiodes, spread across the
two boards. Initially we wanted to used a master-slave

configuration for the Teensys, as shown in Figure 6. A
slave Teensy would send its photodiode data to a master
Teensy, which would perform all computations and send
the result to a computer.

Figure 6. Data flow from a slave Teensy to a master Teensy to the
computer

Unfortunately, we ran into some hardware problems
using the Teensy. First, all eight general purpose interrupt
vectors were already used to get photodiode readings from
the horizontal and vertical laser sweeps. While we still
could configure one Teensy as an SPI slave, a precisely
timed solution seemed less obvious. However, we were
never able to explore this approach. We quickly noticed
that the stream of data from the Teensy to Theo’s 2013
Macbook pro was significantly throttled. We found that
removing all logic after the projection computation amelio-
rated this problem, though the Teensy still required several
power cycles to stream properly. These observations caused
us to attribute the streaming lag to the Teensy itself. As a
result, we decided to stream all data individually from both
Teensys to the computer over a 1Mbps serial connection,
as shown in Figure 7. We felt that streaming data to the
computer would have the highest probability of success and
allow us to iterate quickly. Once we had a sufficiently fast
stream of data, we never needed to power cycle the Teensy
or re-upload code.

Figure 7. Data flow from each Teensy individually to the computer

Much later, we realized our data rate problem was con-
fined to Theo’s computer – Georgia’s computer streamed
in the data at a much faster, more consistent rate. Unfor-
tunately Georgia’s computer only had one USB port, and
we realized this too late into our implementation to start
over. Interestingly, Theo’s computer streamed in data at an
acceptable rate using the ”screen” terminal command; how-
ever, these results were reproducible by neither Arduino’s
serial monitor nor javascipt’s serial library. After a brief

foray into complex workarounds, we determined that Vir-
tual Windows 7 machine running on Theo’s computer could
produce comparable data rates to Georgia’s computer. We
never determined the root cause of the issue. In the Future
Work section, we discuss what our approach would have
been given this knowledge (or if we had another week).

In our final implementation, each Teensy still polled the
photodiodes as in the HW6 code. However, instead of wait-
ing for all diodes to be ready, it computed X and Y projec-
tions and sent this data as soon as both horizontal and verti-
cal sweep data from an individual photodiode was ready. In
addition, these data were tagged with the diode number and
the board number. A Teensy determined its board number
from the value of the GPIO 2 pin input, which was checked
in the setup. Board zero has this pin pulled to ground.

All of this data was sent as a continuous stream over two
1Mbps serial connections to our node.js server. A function
called on each data received event accumulated the diode
data. As soon as data was received from four unique diodes,
these four were used for positional tracking. We explain the
advantages and disadvantages of this implementation in the
following sections.

3.3. Positional Computation

We used the HTC-Vive Lighthouse system to track the
position of the VRduinos in the 3D scene with the Homog-
raphy and Levenberg-Marquardt estimation methods. Since
the problem of optics-based positional tracking is similar
to the reverse camera celebration method, in which we are
only concerned with the 2D plane of the image, most lit-
erature on the implementation of these methods assumed
a 2D photodiode array. Consequently, we derived the full
3D equations ourselves before implementing them in code.
Here we include a brief derivation, using the EE 267 Lec-
ture 11 and Lecture 12 slides of Professor Gordon Wetzstein
as a starting point and following the notation therein [4] [5].

3.3.1 Homography Pose Derivation

The Homography calculation assumes as an input the rela-
tive physical coordinates of the diodes in question as well
as the 2D projection of the photodiodes onto the ”cam-
era plane.” The calculation of this 2D projection is not de-
scribed here, but can be found in [4].

Given these inputs, the 3D view position, denoted pview,
is the solution to the following matrix equation:

pviewx,y,z =

fx 0 cx
0 fy cy
0 0 −1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



pobjx

pobjy

pobjz

1


(1)

For the remainder of this derivation we assumes that the
camera and lens are properly aligned (cx/y = 0) and that
the focal-length is unit distance (fx/y = 1). However,
due to our 3D photodiode constellation, we cannot assume
p3Dz = 0, as done in most previous literature (see discussion
in Section 2). With these assumptions, we can simplify Eq
1 to Eq 2 in order to solve for the homography matrix.

1 0 0
0 1 0
0 0 −1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 = s

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 1



pviewx,y,z =s

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 1



pobjx

pobjy

pobjz

1


[
pprojx

pprojy

]
=

pview
x

pview
z

pview
y

pview
z

 =

 s(h11p
obj
x +h12p

obj
y +h13p

obj
z +h14

s(h31p
obj
x +h32p

obj
y +h33p

obj
z +h14

s(h21p
obj
x +h22p

obj
y +h23p

obj
z +h24

s(h31p
obj
x +h32p

obj
y +h33p

obj
z +h14


(2)

Since the homography matrix for which we are solving
has eleven unknowns, and since each photodiode provides
three data points (pobjx,y,z), four photodiodes are required for
solution.

Although more than four diodes can be used for the cal-
culation, this over-constrains the problem and may result in
a non-soluble system if there are disagreements in the data.
To avoid this concern, we restricted our implementation to
use the data from only four photodiodes in each calculation,
as described in Section 3.3.3.

3.3.2 Levenberg-Marquardt Derivation

After obtaining an initial position estimate from Homogra-
phy, our implementation used ten iterations of Levenberg-
Marquardt nonlinear optimization to achieve our final posi-
tional estimate. As in Homography, we freshly derived the
equations for a 3D photodiode constellation. We will not in-
clude the full derivation of the Jacobians here, but will sim-
ply present the extended homography matrix (the Jacobians
are explicitly computed in server\flevenbergMarquardt.js in
our code). Using this, the functions f and g and the Jaco-
bians Jf and fg can be found simply using the same proce-
dure as in the 2D constellation case [5]. Note, however, that
the dimensions of the Jacobians will change:

Jf : 8× 9→ 8× 12
Jg : 9× 6→ 12× 6

h1 = cos(θy) cos(θz)− sin(θx) sin(thetay) sin(θz)

h2 = − cos(θx) sin(θz)

h3 = sin(θy) cos(θz) + sin(θx) cos(θy) sin(θz)

h4 = tx

h5 = cos(θy) sin(θz) + sin(θx) sin(θy) cos(θz)

h6 = cos(θx) cos(θz)

h7 = sin(θy) sin(θz)− sin(θx) cos(θy) cos(θz)

h8 = ty

h9 = cos(θx) sin(θy)

h10 = − sin(θx)

h11 = − cos(θx) cos(θy)

h12 = −tz

(3)

3.3.3 Development and Testing

For both Homography and Levenberg-Marquardt, our im-
plementations assumed that each position estimate was cal-
culated from the data of exactly four photodiodes. As dis-
cussed in Section 3.3.1, this is the minimum number of
photodiodes necessary to fully constrain the system, but the
question does arise whether, since our 3D constellation con-
tains eight photodiodes, the accuracy of the estimate might
not be improved by included the data from all available pho-
todiodes.

This was, in fact, our original method, which we later
abandoned or two primary reasons:

1. Computational Efficiency: As an example, let us
consider homography, in which the solution requires
the inversion n × 12 matrix in the 3D constellation
case (n × 8 in the 2D case), where n is the number of
photodiodes included in the computation. Assuming
that we use the pseudo-inverse (A+ = AT (AAT)−1)
rather than the true inverse (since requiring a square
matrix predefines the number of photodiodes used),
the complexity of this single pseudo-inversion grows
as O(12n2) + O(n2.373). It is possible that this com-
plexity growth might be manageable; however, given
the time constraints of the project, we elected to avoid
the risk.

2. Implementation Complexity: In our system, we do
not wish to mandate that all eight photodiodes be in
line of sight of the lighthouse for positional updat-
ing to occur – rather, we wish to use the data avail-
able to compute a positional estimate over the great-
est possible range of user movement. Consequently,
if we wished to compute each positional estimate us-
ing all diodes currently in line of sight, we would have
to develop a system with flexible input, cutting off if

fewer than four diodes were available, but accepting
any number above four and consequently performing
computations of variable dimensionality. This is cer-
tainly achievable and would be an interesting extension
to our study. However, as it introduced additional op-
portunities for error without guaranteed improvement,
we opted for the lower complexity of a fixed-input sys-
tem.

However, even though only four photodiodes are being used
in each calculation, the presence of all eight diodes does
add robustness to the system due to the data-diversity intro-
duced by pulling data from the diodes in a pseudo-random
fashion (see Section 3.2 for a detailed discussion of the data
streaming process). Since the computation is done on an
independently selected four-diode array in each time-step,
the presence of a exponentially-decaying moving-average
low pass filter results in a de facto averaging across time of
multiple four-diode array combinations, adding robustness
to the system by decreasing the effect of bias or error in the
estimation from any given four-diode array.

In theory, this robustness through multiple arrays could
be further increased by computing multiple permutations
for each time-step and filtering the results. We briefly
attempted this implementation by requiring the data of
five diodes rather than four, running the Homography and
Levenberg-Marquardt computations for each of the five
possible four-diode permutations, and averaging the results.
In our implementation, however, these additional computa-
tions appeared to introduce too much lag into the system,
causing unpredictable jumps in the final rendering. Thus,
while we believe using multiple permutations per time-step
could improve performance if implemented properly, we
chose to restrain our system to a single permutation per
time-step, trusting on the inherent randomness of the data-
selection process and the sharpness of the low pass filter to
improve the system’s robustness.

In order to thoroughly test our estimation methods
throughout development, we developed two fully-testable
phases before completing the final implementation. In the
first phase, we implemented standard 2D-constellation Ho-
mography and Levenberg-Marquardt in JavaScript. We then
tested our 3D derivation by implementing the 3D estima-
tions in JavaScript, but setting pobjz = 0 for all photodiodes,
allowing us to run the same tests cases as the 2D case, where
the pobjz = 0 assumption is implicit, and check our results
numerically. Finally, we substituted in 3D pobj inputs and
tested qualitatively for smoothness and accuracy.

4. Evaluation
4.1. Latency in the System

Our greatest design concern throughout the development
process was latency in the photodiode data. In order to en-

sure accurate estimates, all data used in a single computa-
tion should be pulled from a single laser sweep of the light-
house. However, since our system sends diode information
to the server immediately upon arrival, this was not guaran-
teed in our system. In practice, since the laser sweeps at 60
Hz, it is unlikely that using data from immediately adjacent
sweeps would cause noticeable disturbances in the render-
ing.

We measured the time it took to get the four diode mea-
surements over several seconds of system runtime. These
measurements indicated an approximate mean update time
of 40ms. As a result, we were likely pulling data from two
to three adjacent laser sweeps. While this update time is
suboptimal, low pass filtering allowed us to maintain a good
visual experience, discussed in the next section.

The wide range of the mean update time, which varied
from less than 1ms to a little over 100ms, was concentrated
heavily around the mean. These statistics indicate the possi-
bility of serial’s buffer adding delay into the system. Single
digit millisecond update times should be regularly achiev-
able with more attention paid to timing of the entire system.
The use of a virtual machine likely added additional lag into
the system as well, though this was never characterized.

After getting all diode ticks, the Homography algorithm
and twenty iterations of the Levenberg Marquardt for pose
estimation consistently ran in an negligible time when us-
ing only four photodiode positions, suggesting that we have
room to do more complex post-processing of the data, dis-
cussed in the Future Work section.

4.2. Qualitative Discussion of Results

We achieved our initial goal of extending the range of
motion over which the lighthouse is able to realiably track,
attaining a rotational range of 195◦, a 90.5% increase over
the original, single-board range of 105◦.

In order to reduce jitter such that it did not noticeably
detract from the VR experience, we used exponentially de-
caying moving averages to implement sharp low-pass filters
in all translation components (X, Y, and Z). For both X and
Y, we were able to weight the filters to remove almost all
noticeable jitter while maintaining reasonable update rates
– even sudden movements were tracked and displayed with
reasonably speed in the X and Y direction.

The Z component, however, contained much more jitter
than X and Y, and in order to a reasonably smooth experi-
ence, we were forced to use a filter which created lag in the
update. Thus while our system does track movement in the
Z direction and renders that movement fairly smoothly, the
render displays a small but noticeable delay.

In contrast to the translation data, the rotation data
showed far too much variance for reliable rendering, even
with extreme low pass filtering. Due to time constraints, we
eventually abandoned rotational tracking and confined our

system to a purely translational one. We discuss possible
alternatives for rotational tracking in Section 5.2.

5. Discussion
5.1. Major Challenges

1. Serial stream issue – Discussed in Section 3.2 and
5.2.1

2. Synchronizing data – Discussed in Sections 3.2 and
5.2.1

3. Lack of literature on extending Homography and
Levenberg-Marquardt to 3D constellations – Discssed
in Section 3.3

4. Precision of measurements – slight errors in photodi-
ode coordinates caused severe drop in performance.

5.2. Future Work

Our project presents opportunities for improvement at
many levels of the system, from the hardware through the
integration into a virtual reality experience. We briefly out-
line some of the most enticing extensions below.

5.2.1 Hardware

We do not believe our solution of streaming all data to
the computer is optimal. As mentioned previously, this
solution was born from a combination of time constraints
and hardware troubles. If we were to start over, we would
link the Teensys together and optimize the connection
to the computer. To communicate Teensy to Teensy, we
would likely try SPI due to it’s ability to support higher
clock speeds. However, since no general purpose interrupt
vectors are available, we would still have to come up with
a means to ensure timing. The default SPI library does
not include a slave mode, so this approach might require
significant firmware programming. Still, we believe accu-
mulating all photodiode ticks on one Teensy is optimal to
ensure all photodiode data are part of one sweep. However,
we believe computation of position on the computer affords
many benefits due to increased processing power. The
increased computing resources allow for more iterations of
the Levenberg Marquardt algorithm and more sophisticated
filtering.

In our project, we streamed serial data as a string rather
than as a bit stream due to time constraints. Converting
this data to a bit stream, sending this, and building a
more complex parser on the computer side would offer
significant performance benefits in communications speed
and latency of the entire system.

In addition, occlusion of the photodiodes by the Teensy
currently limits Y-axis rotational range of the VRduino.

Removing the headers and soldering the Teensy directly
onto the PCB provides a quick remedy. Our jig leaves
space for the Teensys to be on the back of the board instead,
though this would require soldering headers to the top
(rather than the bottom) of the Teensy or wiring to maintain
the correct footprint.

5.2.2 Diode Selection

Our current method of selecting the diode measurements to
use – selecting the first four measurements – optimizes for
speed only. We implemented a permutations approach with
five photodiodes, discussed in Section 3.3.3, but we did not
explore many other potential algorithms to choose which
photodiode measurements we use in the computation.

With more precise timing, we could have if each photo-
diode had a measurement within a certain laser time frame.
Given this information, we could permute over more data or
select particular photodiodes to give a more robust estima-
tion. For example, if we faced the lighthouse directly, we
would want to use the photodiodes on the sides if we were
to pick four.

In addition, we could have used collected time stamp
data to avoid making updates based on bad data. We already
do data rejection and filtering in the LM implementation,
though not beforehand. For example, if we knew two read-
ings were updated several laser sweeps frames apart, we
would never run the computation in the first place. Comple-
mentary filtering with IMU data or predictive filtering when
using this method could help prevent noticeable jumps or
lag in the scene.

5.2.3 Filtering

Our current implementation performs highly naive filtering
on the translation data and would likely be substantially
improved by more robust filters. In particular, a custom
designed filter might be able to appropriately reduce jitter
without introducing the lag currently noticeable along the
Z-axis.

While we did not do any tests in this area, it is also pos-
sible that predictive filtering, such as extended Kalman fil-
tering, might stabilize the Levenberg-Marquardt rotational
data enough to allow its incorporation. However, as we did
not experiment with this, we do not have specific recom-
mendations to explore.

5.2.4 Demo Experience

Had we had more time, we would greatly have liked to in-
clude rotation in our demo. Despite the instability seen in
the Levenberg-Marquardt rotational data, it should be possi-
ble to achieve a reasonably immersive experience by imple-

menting gyro rotation. The only anticipated complication
to this approach is the presence of two VRduinos, and con-
sequently of two gyros. However, since the gyro measure-
ments are taken on each VRduino independently, the quater-
nions can simply be sent to the server, converted into Euler
angles, averaged, and the then used for rotational tracking.

A particularly exciting extension for this project would
be use two lighthouses positioned at opposite sides of a
room to allow full 360◦ rotation. We anticipate the hand-
off (switching from one lighthouse to another) to be by far
the most challenging element of this extension. However, as
the VRduino can already distinguish between the two light-
houses, we believe this should be surmountable by using the
region of overlap between the two lighthouses to calculate
the transformation between the coordinate axes of the two
lighthouses.

6. Acknowledgements
We would like to thank Professor Gordon Wetzstein of

Stanford University for all his instruction and guidance
throughout this project. We would also like to thank Robert
Konrad, Hayato Ikoma, and Keenan Molner for their gen-
eral support and guidence, and especially for their assis-
tance with hardware difficulties and replacements.

References
[1] J. Ashley. How hololens sensors work. 2015.
[2] J. Durbin. Google: Wireless positional tracking solved, but

heat still a problem for vr. 2016.
[3] D. C. Niehorster, L. Li, and M. Lappe. The accuracy and

precision of position and orientation tracking in the htc vive
virtual reality system for scientific research. i-Perception,
8(3):2041669517708205, 2017.

[4] G. Wetzstein. Ee 267: Positional tracking i. 2017.
[5] G. Wetzstein. Ee 267: Positional tracking ii. 2017.

